|本期目录/Table of Contents|

[1]阎 琨 段梦涵 张雨颀.人工智能赋能教育的理论演进框架与趋势[J].清华大学教育研究,2025,(02):33-42.
 YAN Kun DUAN Meng-han ZHANG Yu-qi.AI-Enabled Education: Framework and Trends of Theoretical Evolutions[J].TSINGHUA JOURNAL OF EDUCATION,2025,(02):33-42.
点击复制

人工智能赋能教育的理论演进框架与趋势
分享到:

清华大学教育研究[ISSN:1001-4519/CN:11-1610/G4]

卷:
期数:
2025年02期
页码:
33-42
栏目:
人工智能与教育
出版日期:
2025-04-20

文章信息/Info

Title:
AI-Enabled Education: Framework and Trends of Theoretical Evolutions
作者:
阎 琨1 段梦涵1 张雨颀2
1.清华大学 教育学院;2.伦敦大学学院 教育与社会学院
Author(s):
YAN Kun1 DUAN Meng-han1 ZHANG Yu-qi2
1.School of Education, Tsinghua University;2.Faculty of Education and Society, University College London
关键词:
人工智能赋能教育理论演进
Keywords:
AI-enabled education theoretical evolution developmental trends
分类号:
G434
文献标志码:
A
摘要:
本文首先探讨了人工智能赋能教育的国际理论的演进框架,即人工智能赋能教育可以分为四个阶段——前人工智能教育阶段、人工智能教育的理论阶段、人工智能教育的技术阶段和人工智能教育的产业阶段的嬗变框架。在理论演进的基础上,论文提出了人工智能赋能教育呈现出的三个演进趋势:技术趋势、教育趋势和应用趋势。论文进而探讨了人工智能赋能教育在演进中所面临的挑战,即理论挑战、范式挑战以及价值观与应用挑战。
Abstract:
This paper explores the international theoretical evolution of AI-enabled education, proposing a framework with four developmental stages: the pre-AI education stage, the theoretical stage, the technological stage, and the industrial stage. Based on this framework, the paper identifies three key trends: technological trends, educational trends, and application trends. It further analyzes the major challenges arising in this evolutionary process, including theoretical challenges, paradigm challenges, and challenges related to values and applications.

相似文献/References:

[1]张优良 尚俊杰.人工智能时代的教师角色再造[J].清华大学教育研究,2019,(04):39.
 ZHANG You-liang SHANG Jun-jie.Reengineering?the?Role?of?Teachers?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2019,(02):39.
[2]黄春梅郭 伟.互联网感知社会宏观大数据与教育学研究之发展[J].清华大学教育研究,2020,(03):74.
 HUANG Chun-meiGUO Wei.Knowledge of Social Macro Big Data by Internet and the Development of Educational Research[J].TSINGHUA JOURNAL OF EDUCATION,2020,(02):74.
[3]田 芬.从“数据崇拜”到“数据正义”:人工智能时代高等教育研究范式的旨趣转换[J].清华大学教育研究,2021,(01):77.
 TIAN Fen.From?Data?Worship?to?Data?Justice:?The?Higher?Education?Research?Paradigm?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2021,(02):77.
[4]黄蓓蓓 钱小龙.探寻世界一流大学人工智能人才培养的奥秘 ——斯坦福大学人工智能人才培养模式的整体性分析[J].清华大学教育研究,2022,(03):33.
 HUANG Bei-bei QIAN Xiao-long.Exploring the Mystery of Cultivating AI Talents in World-class Universities ——An Overall Analysis of the Training Mode of AI Talents in Stanford University[J].TSINGHUA JOURNAL OF EDUCATION,2022,(02):33.
[5]李春文 陆思聪 吴热冰 丁青青 刘华平 李东海等.从人工智能学科发展到人机会话关键问题的探析与展望[J].清华大学教育研究,2022,(03):25.
 LI Chun-wen LU Si-cong WU Re-bing DING Qing-qing LIU Hua-ping LI Dong-hai.Analysis and Prospect from Development of Artificial Intelligence to Key Issues of Human-machine Conversation[J].TSINGHUA JOURNAL OF EDUCATION,2022,(02):25.
[6]王战军 葛明星 张 微.面向知识的教师教学监测评估[J].清华大学教育研究,2022,(06):65.
 WANG Zhan-jun GE Ming-xing ZHANG Wei.A Knowledge-Oriented Teaching Monitoring Assessment[J].TSINGHUA JOURNAL OF EDUCATION,2022,(02):65.
[7]林 健 杨 冬.工程教育智能化:内涵、特征与挑战[J].清华大学教育研究,2023,(06):1.
 LIN Jian YANG Dong.Intelligentization of Engineering Education: Connotation, Characteristics and Challenges[J].TSINGHUA JOURNAL OF EDUCATION,2023,(02):1.
[8]马永霞 王 琳.人工智能时代的创新创业教育:价值旨归、变革逻辑与实践路径[J].清华大学教育研究,2023,(06):115.
 MA Yong-xia Wang Lin.Innovation and Entrepreneurship Education in the Age of Artificial Intelligence:Value Orientation, Logical Transformation and Practical Pathways[J].TSINGHUA JOURNAL OF EDUCATION,2023,(02):115.
[9]迈克尔·彼得斯.“云思维”:大学在人工智能驱动知识生态系统中的制胜之道[J].清华大学教育研究,2024,(05):1.
 Michael A. Peters.“Minds in the Cloud”: Futureproofing the University in an AI-Driven Knowledge Ecosystem[J].TSINGHUA JOURNAL OF EDUCATION,2024,(02):1.
[10]让-克洛德·鲁阿诺-博巴兰.人工智能对高等教育的变革性影响:当前趋势与未来方向之批判性反思[J].清华大学教育研究,2024,(05):13.
 Jean-Claude Ruano-Borbalan.The Transformative Impact of Artificial Intelligence on Higher Education: A Critical Reflection on Current Trends and Futures Directions[J].TSINGHUA JOURNAL OF EDUCATION,2024,(02):13.

更新日期/Last Update: 2025-04-20