|本期目录/Table of Contents|

[1]黄蓓蓓 钱小龙.探寻世界一流大学人工智能人才培养的奥秘 ——斯坦福大学人工智能人才培养模式的整体性分析[J].清华大学教育研究,2022,(03):33-41.
 HUANG Bei-bei QIAN Xiao-long.Exploring the Mystery of Cultivating AI Talents in World-class Universities ——An Overall Analysis of the Training Mode of AI Talents in Stanford University[J].TSINGHUA JOURNAL OF EDUCATION,2022,(03):33-41.
点击复制

探寻世界一流大学人工智能人才培养的奥秘 ——斯坦福大学人工智能人才培养模式的整体性分析
分享到:

清华大学教育研究[ISSN:1001-4519/CN:11-1610/G4]

卷:
期数:
2022年03期
页码:
33-41
栏目:
人工智能专题
出版日期:
2022-06-20

文章信息/Info

Title:
Exploring the Mystery of Cultivating AI Talents in World-class Universities ——An Overall Analysis of the Training Mode of AI Talents in Stanford University
作者:
黄蓓蓓12 钱小龙1
1.南通大学 未来教育研究所;2.南京大学 教育研究院
Author(s):
HUANG Bei-bei12 QIAN Xiao-long1
1.Institute of Future Education, Nantong University; 2.Institute of Education, Nanjing University
关键词:
人工智能人才培养模式斯坦福大学
Keywords:
artificial intelligence talents training model Stanford University
分类号:
G649
文献标志码:
A
摘要:
随着人工智能发展国家战略的逐步落实和人工智能核心地位的日益凸显,人工智能人才面临严重的供需矛盾,相关高校正在积极采取措施来加大人工智能人才培养力度。然而,作为新兴领域,我国的人工智能人才培养尚处在摸索阶段,需要积极学习和借鉴世界一流大学的丰富经验。斯坦福大学在人工智能领域始终保持世界前列,而其人才培养模式具有独特的优势。为了更加有效地探寻斯坦福大学人工智能人才培养的秘密,本研究采用扎根理论研究方法,选择斯坦福人工智能课程培养方案文本进行三级编码分析,立足微观层面自下而上地总结出以培养理念为主线,培养过程为主体,素养要求与结果评价为保障的人才培养模式。具体表现为:坚持规范、诚信和效率至上的培养理念;遵循有厚度、有内涵、有张力的素养需求;强调融合、多元、人性化的培养过程;构建以综合性能力提升为目标的科学评价机制。
Abstract:
With the gradual implementation of the national strategy for the development of artificial intelligence(AI)and the increasingly prominent position of the core of AI, AI talents are facing a serious contradiction between supply and demand.Relevant colleges and universities are actively taking measures to increase the cultivation of AI talents.However, as a new field, the cultivation of AI talents in China is still in the exploratory stage, which requires active learning from the rich experience of world-class universities.Stanford University has always been at the forefront of the world in the field of AI, and its talent training model has unique advantages.In order to explore the secrets of the cultivation of AI talents at Stanford University more effectively, this study adopts the method of grounded theory research with the programs of Stanford AI courses.Through a bottom-up three-level coding analysis, the paper induces a micro-level talent training mode, which takes the cultivation idea as the main line, the cultivation process as the main body, and the quality requirements and outcome evaluation as the guarantee mechanism.Specifically, it includes: adhering to the cultivation idea of standardization, integrity and efficiency first, following the quality requirements with thickness, connotation and tension, emphasizing the cultivation process of integration, diversity and humanization, and constructing a scientific evaluation mechanism aiming at the improvement of comprehensive ability.

相似文献/References:

[1]李立国.工业4.0时代的高等教育人才培养模式[J].清华大学教育研究,2016,(01):6.
[2]张优良 尚俊杰.人工智能时代的教师角色再造[J].清华大学教育研究,2019,(04):39.
 ZHANG You-liang SHANG Jun-jie.Reengineering?the?Role?of?Teachers?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2019,(03):39.
[3]黄春梅郭 伟.互联网感知社会宏观大数据与教育学研究之发展[J].清华大学教育研究,2020,(03):74.
 HUANG Chun-meiGUO Wei.Knowledge of Social Macro Big Data by Internet and the Development of Educational Research[J].TSINGHUA JOURNAL OF EDUCATION,2020,(03):74.
[4]徐立辉 王孙禺.跨学科合作的工科人才培养新模式 ——工程教育的探索性多案例研究[J].清华大学教育研究,2020,(05):107.
 XU Li-hui WANG Sun-yu.New Mode of Engineering Talents Training Based on Interdisciplinary Cooperation: An Exploratory Multi-Case Study of Engineering Education[J].TSINGHUA JOURNAL OF EDUCATION,2020,(03):107.
[5]林 健.未来技术学院建设:未来技术领军人才培养[J].清华大学教育研究,2021,(01):40.
 Lin Jian.The?Construction?of?Future?Technical?College:?Training?of?Future?Technical?Leading?Talents[J].TSINGHUA JOURNAL OF EDUCATION,2021,(03):40.
[6]田 芬.从“数据崇拜”到“数据正义”:人工智能时代高等教育研究范式的旨趣转换[J].清华大学教育研究,2021,(01):77.
 TIAN Fen.From?Data?Worship?to?Data?Justice:?The?Higher?Education?Research?Paradigm?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2021,(03):77.
[7]李春文 陆思聪 吴热冰 丁青青 刘华平 李东海等.从人工智能学科发展到人机会话关键问题的探析与展望[J].清华大学教育研究,2022,(03):25.
 LI Chun-wen LU Si-cong WU Re-bing DING Qing-qing LIU Hua-ping LI Dong-hai.Analysis and Prospect from Development of Artificial Intelligence to Key Issues of Human-machine Conversation[J].TSINGHUA JOURNAL OF EDUCATION,2022,(03):25.
[8]王战军 葛明星 张 微.面向知识的教师教学监测评估[J].清华大学教育研究,2022,(06):65.
 WANG Zhan-jun GE Ming-xing ZHANG Wei.A Knowledge-Oriented Teaching Monitoring Assessment[J].TSINGHUA JOURNAL OF EDUCATION,2022,(03):65.
[9]林 健 杨 冬.工程教育智能化:内涵、特征与挑战[J].清华大学教育研究,2023,(06):1.
 LIN Jian YANG Dong.Intelligentization of Engineering Education: Connotation, Characteristics and Challenges[J].TSINGHUA JOURNAL OF EDUCATION,2023,(03):1.
[10]马永霞 王 琳.人工智能时代的创新创业教育:价值旨归、变革逻辑与实践路径[J].清华大学教育研究,2023,(06):115.
 MA Yong-xia Wang Lin.Innovation and Entrepreneurship Education in the Age of Artificial Intelligence:Value Orientation, Logical Transformation and Practical Pathways[J].TSINGHUA JOURNAL OF EDUCATION,2023,(03):115.

更新日期/Last Update: 2022-06-20