|本期目录/Table of Contents|

[1]黄春梅郭 伟.互联网感知社会宏观大数据与教育学研究之发展[J].清华大学教育研究,2020,(03):74-80.
 HUANG Chun-meiGUO Wei.Knowledge of Social Macro Big Data by Internet and the Development of Educational Research[J].TSINGHUA JOURNAL OF EDUCATION,2020,(03):74-80.
点击复制

互联网感知社会宏观大数据与教育学研究之发展
分享到:

清华大学教育研究[ISSN:1001-4519/CN:11-1610/G4]

卷:
期数:
2020年03期
页码:
74-80
栏目:
学位与研究生教育
出版日期:
2020-06-20

文章信息/Info

Title:
Knowledge of Social Macro Big Data by Internet and the Development of Educational Research
作者:
黄春梅1郭 伟2
1.清华大学 信息技术研究院;2.中国人民公安大学 公安管理学院
Author(s):
HUANG Chun-mei1GUO Wei2
1.The School of Information Science and Technology, Tsinghua University; 2.School of Police Administration, People's Public Security University of China
关键词:
大数据人工智能教育学研究工具
Keywords:
big data artificial intelligence pedagogy research tools
分类号:
G40-03
文献标志码:
A
摘要:
数据是教育学研究中开展量化研究或实证研究的基础,目前常用的数据来源在全面性、准确性和即时性方面存在一定的局限。本文提出的人工智能算法驱动的互联网感知社会宏观大数据信息平台DaaS(Data as a service),可为教育学研究者提供全新的大数据来源,其主要技术特征在于数据采集全面、动态和即时,数据由人工智能算法生成,覆盖全国所有区县,数据可视化可让使用数据变成像用网和用电一样低成本和高效,让构建模型和算法如同写PPT一样友好和便捷。DaaS信息平台能够为研究者提供传统数据采集方法难以收集的数据,从时间维度可帮助研究者开展具有历史发展进程规律性研究和预测性研究,从空间维度可帮助研究者开展跨区域研究,作为一种数据流驱动的创新型工具全面推动教育学研究的转型升级。
Abstract:
Data is the basis of quantitative and qualitative analysis in educational research. At present, the commonly used data sources have some limitations in comprehensiveness, accuracy and timeliness. We designed an AI Big database named DaaS (Data as a Service), providing a brand new source of big data to education researchers. The main technical features of DaaS include comprehensive, dynamic and real-time data collection, data generated by artificial intelligence algorithm, data coverage of all districts and counties in China and data visualization. DaaS is supposed to provide convenience to researchers, which makes the use of data as low-cost and efficient as network and electricity, the construction of models and algorithms as friendly and convenient as making PowerPoint Slides. DaaS AI database can help researchers to collect data that are difficult to gather by traditional methods, to carry out regular and predictive research with historical development process from the time dimension, and to do cross-regional research from the space dimension. As an innovative tool driven by data flow, DaaS will comprehensively promote the transformation and upgrading of educational research.

相似文献/References:

[1]郑石明.大数据驱动创新创业教育变革:理论与实践[J].清华大学教育研究,2016,(03):65.
[2]丁小浩.大数据时代的教育研究[J].清华大学教育研究,2017,(05):8.
 DING Xiao-hao.The Educational Research under the Context of Big Data[J].TSINGHUA JOURNAL OF EDUCATION,2017,(03):8.
[3]马星王楠.基于大数据的高校教学质量评价体系构建[J].清华大学教育研究,2018,(02):38.[doi:10.14138/j.1001-4519.2018.02.003806]
 MA XingWANG Nan.Constructing?the?Teaching?Quality?Evaluation?System?of?Higher?Education?in?Big?Data?Era[J].TSINGHUA JOURNAL OF EDUCATION,2018,(03):38.[doi:10.14138/j.1001-4519.2018.02.003806]
[4]朱成晨 闫广芬.现代化与专业化:大数据时代教育评价的新技术推进逻辑[J].清华大学教育研究,2018,(05):75.[doi:10.14138/j.1001-4519.2018.05.007506]
 ZHU Cheng-chen YAN Guang-fen.Modernization and Specialization:The Logics of New Technology Advance in Educational Evaluation in the Era of Big Data[J].TSINGHUA JOURNAL OF EDUCATION,2018,(03):75.[doi:10.14138/j.1001-4519.2018.05.007506]
[5]张优良 尚俊杰.人工智能时代的教师角色再造[J].清华大学教育研究,2019,(04):39.
 ZHANG You-liang SHANG Jun-jie.Reengineering?the?Role?of?Teachers?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2019,(03):39.
[6]于 涵 王 蕾 佟 威.国家题库建设:从1.0到2.0——新高考国家题库创新研究[J].清华大学教育研究,2020,(01):94.
 Yu Han Wang Lei Tong Wei.National Item Bank System: From Present to the New Era:An Innovational Research Based on the New Gaokao[J].TSINGHUA JOURNAL OF EDUCATION,2020,(03):94.
[7]田 芬.从“数据崇拜”到“数据正义”:人工智能时代高等教育研究范式的旨趣转换[J].清华大学教育研究,2021,(01):77.
 TIAN Fen.From?Data?Worship?to?Data?Justice:?The?Higher?Education?Research?Paradigm?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2021,(03):77.
[8]黄蓓蓓 钱小龙.探寻世界一流大学人工智能人才培养的奥秘 ——斯坦福大学人工智能人才培养模式的整体性分析[J].清华大学教育研究,2022,(03):33.
 HUANG Bei-bei QIAN Xiao-long.Exploring the Mystery of Cultivating AI Talents in World-class Universities ——An Overall Analysis of the Training Mode of AI Talents in Stanford University[J].TSINGHUA JOURNAL OF EDUCATION,2022,(03):33.
[9]李春文 陆思聪 吴热冰 丁青青 刘华平 李东海等.从人工智能学科发展到人机会话关键问题的探析与展望[J].清华大学教育研究,2022,(03):25.
 LI Chun-wen LU Si-cong WU Re-bing DING Qing-qing LIU Hua-ping LI Dong-hai.Analysis and Prospect from Development of Artificial Intelligence to Key Issues of Human-machine Conversation[J].TSINGHUA JOURNAL OF EDUCATION,2022,(03):25.
[10]林 健 杨 冬.工程教育智能化:内涵、特征与挑战[J].清华大学教育研究,2023,(06):1.
 LIN Jian YANG Dong.Intelligentization of Engineering Education: Connotation, Characteristics and Challenges[J].TSINGHUA JOURNAL OF EDUCATION,2023,(03):1.
[11]王战军 葛明星 张 微.面向知识的教师教学监测评估[J].清华大学教育研究,2022,(06):65.
 WANG Zhan-jun GE Ming-xing ZHANG Wei.A Knowledge-Oriented Teaching Monitoring Assessment[J].TSINGHUA JOURNAL OF EDUCATION,2022,(03):65.

更新日期/Last Update: 2020-06-20