|本期目录/Table of Contents|

[1]迈克尔·彼得斯.“云思维”:大学在人工智能驱动知识生态系统中的制胜之道[J].清华大学教育研究,2024,(05):1-12.
 Michael A. Peters.“Minds in the Cloud”: Futureproofing the University in an AI-Driven Knowledge Ecosystem[J].TSINGHUA JOURNAL OF EDUCATION,2024,(05):1-12.
点击复制

“云思维”:大学在人工智能驱动知识生态系统中的制胜之道
分享到:

清华大学教育研究[ISSN:1001-4519/CN:11-1610/G4]

卷:
期数:
2024年05期
页码:
1-12
栏目:
人工智能与教育
出版日期:
2024-10-20

文章信息/Info

Title:
“Minds in the Cloud”: Futureproofing the University in an AI-Driven Knowledge Ecosystem
作者:
迈克尔·彼得斯
伊利诺伊大学厄巴纳-香槟分校 教育学院
Author(s):
Michael A. Peters
College of Education, University of Illinois at Urbana-Champaign
关键词:
人工智能认知技术高等教育数字系统未来准备
Keywords:
artificial intelligence cognitive technologies higher education digital systems futureproofing
分类号:
G434
文献标志码:
A
摘要:
随着人工智能与认知技术迅速发展,大学站在了关键的十字路口。“云思维”,即人类认知与数字系统的深度融合,为高等教育带来了前所未有的机遇和挑战。面对这一新形势,大学需重新审视自身角色,不仅要适应变化以维持生存,还要在人工智能驱动的生态系统中寻求发展。本文探讨大学如何在新的认知环境下为未来做好准备,深入分析人工智能与云技术在教育、研究和知识创造方面的变革潜力。论述数字知识经济中的三种大学模式:(1)“数据为王”的数据密集型大学模式;(2)融合人类与人工智能,构建动态、适应性强且包容性广的学习系统的奇点大学模式;(3)由奇点大学演进而成的后奇点大学模式,即依据人类认知与人工智能深度融合的混合智能对高等教育进行的变革性前瞻。基于当下从生成式人工智能到通用人工智能的技术发展,本文以上述相互交叠的模式为战略背景,探讨它们将如何重塑高等教育的根基。
Abstract:
In the rapidly evolving landscape of artificial intelligence and cognitive technologies, universities stand at a crucial crossroads. The concept of “Minds in the Cloud”-the deep integration of human cognition with digital systems-presents both unprecedented opportunities and formidable challenges for higher education. In navigating this new terrain, universities must reimagine their role, adapting not just to survive but to thrive in an AI-driven ecosystem. This presentation explores how universities can futureproof themselves in this new cognitive landscape, examining the transformative potential of AI and cloud technologies in education, research, and knowledge creation. The presentation will investigate three models of the university in the digital knowledge economy:(i) the data-intensive model of the university where “data is king”;(ii) the Singularity model of the university that integrates human and artificial intelligence to create a dynamic, adaptive and inclusive learning system and(iii) its evolution into the model of the post-Singularity university, a revolutionary vision for higher education based on hybrid intelligence of the deep integration of human cognition and AI. The paper presents these overlapping models as the strategic context based on the technological progression that is taking place with the shift from GenAI to AGI. The paper examines how these models will reshape the very foundations of higher education.

相似文献/References:

[1]张优良 尚俊杰.人工智能时代的教师角色再造[J].清华大学教育研究,2019,(04):39.
 ZHANG You-liang SHANG Jun-jie.Reengineering?the?Role?of?Teachers?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2019,(05):39.
[2]黄春梅郭 伟.互联网感知社会宏观大数据与教育学研究之发展[J].清华大学教育研究,2020,(03):74.
 HUANG Chun-meiGUO Wei.Knowledge of Social Macro Big Data by Internet and the Development of Educational Research[J].TSINGHUA JOURNAL OF EDUCATION,2020,(05):74.
[3]田 芬.从“数据崇拜”到“数据正义”:人工智能时代高等教育研究范式的旨趣转换[J].清华大学教育研究,2021,(01):77.
 TIAN Fen.From?Data?Worship?to?Data?Justice:?The?Higher?Education?Research?Paradigm?in?the?Era?of?Artificial?Intelligence[J].TSINGHUA JOURNAL OF EDUCATION,2021,(05):77.
[4]黄蓓蓓 钱小龙.探寻世界一流大学人工智能人才培养的奥秘 ——斯坦福大学人工智能人才培养模式的整体性分析[J].清华大学教育研究,2022,(03):33.
 HUANG Bei-bei QIAN Xiao-long.Exploring the Mystery of Cultivating AI Talents in World-class Universities ——An Overall Analysis of the Training Mode of AI Talents in Stanford University[J].TSINGHUA JOURNAL OF EDUCATION,2022,(05):33.
[5]李春文 陆思聪 吴热冰 丁青青 刘华平 李东海等.从人工智能学科发展到人机会话关键问题的探析与展望[J].清华大学教育研究,2022,(03):25.
 LI Chun-wen LU Si-cong WU Re-bing DING Qing-qing LIU Hua-ping LI Dong-hai.Analysis and Prospect from Development of Artificial Intelligence to Key Issues of Human-machine Conversation[J].TSINGHUA JOURNAL OF EDUCATION,2022,(05):25.
[6]王战军 葛明星 张 微.面向知识的教师教学监测评估[J].清华大学教育研究,2022,(06):65.
 WANG Zhan-jun GE Ming-xing ZHANG Wei.A Knowledge-Oriented Teaching Monitoring Assessment[J].TSINGHUA JOURNAL OF EDUCATION,2022,(05):65.
[7]林 健 杨 冬.工程教育智能化:内涵、特征与挑战[J].清华大学教育研究,2023,(06):1.
 LIN Jian YANG Dong.Intelligentization of Engineering Education: Connotation, Characteristics and Challenges[J].TSINGHUA JOURNAL OF EDUCATION,2023,(05):1.
[8]马永霞 王 琳.人工智能时代的创新创业教育:价值旨归、变革逻辑与实践路径[J].清华大学教育研究,2023,(06):115.
 MA Yong-xia Wang Lin.Innovation and Entrepreneurship Education in the Age of Artificial Intelligence:Value Orientation, Logical Transformation and Practical Pathways[J].TSINGHUA JOURNAL OF EDUCATION,2023,(05):115.
[9]让-克洛德·鲁阿诺-博巴兰.人工智能对高等教育的变革性影响:当前趋势与未来方向之批判性反思[J].清华大学教育研究,2024,(05):13.
 Jean-Claude Ruano-Borbalan.The Transformative Impact of Artificial Intelligence on Higher Education: A Critical Reflection on Current Trends and Futures Directions[J].TSINGHUA JOURNAL OF EDUCATION,2024,(05):13.
[10]让-加布里埃尔·加纳夏.高等教育中人工智能教育的若干挑战[J].清华大学教育研究,2025,(01):10.
 Jean-Gabriel Ganascia.Some Challenges in Teaching AI in Higher Education[J].TSINGHUA JOURNAL OF EDUCATION,2025,(05):10.

更新日期/Last Update: 2024-10-20